Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int xydx\mathrm{d}y
Evaluate the indefinite integral first.
xdx\int y\mathrm{d}y
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
xdx\times \frac{y^{2}}{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{x^{2}dy^{2}}{2}
Simplify.
\frac{1}{2}x^{2}d\times \left(2\pi \right)^{2}-\frac{1}{2}x^{2}d\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2x^{2}d\pi ^{2}
Simplify.