Evaluate
\pi \sin(2t)\left(\sin(t)\right)^{3}
Differentiate w.r.t. t
\pi \left(\sin(t)\right)^{2}\left(2\sin(t)\cos(2t)+3\sin(2t)\cos(t)\right)
Quiz
Integration
5 problems similar to:
\int _ { 0 } ^ { 2 \pi } ( \cos t ) ( \sin t ) ^ { 4 } ] 1 d t
Share
Copied to clipboard
\int \cos(t)\left(\sin(t)\right)^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\cos(t)\left(\sin(t)\right)^{4}x
Find the integral of \cos(t)\left(\sin(t)\right)^{4} using the table of common integrals rule \int a\mathrm{d}x=ax.
2\cos(t)\left(\sin(t)\right)^{4}\pi +0\cos(t)\left(\sin(t)\right)^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\pi \sin(2t)\left(\sin(t)\right)^{3}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}