Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \pi \left(x^{2}\right)^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\pi \int x^{4}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\pi \times \frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{\pi x^{5}}{5}
Simplify.
\frac{1}{5}\pi \times \left(2\pi \right)^{5}-\frac{1}{5}\pi \times 0^{5}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{32\pi ^{6}}{5}
Simplify.