Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 9x^{2}+48x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int 9x^{2}\mathrm{d}x+\int 48x^{3}\mathrm{d}x
Integrate the sum term by term.
9\int x^{2}\mathrm{d}x+48\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
3x^{3}+48\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 9 times \frac{x^{3}}{3}.
3x^{3}+12x^{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 48 times \frac{x^{4}}{4}.
3\times 17^{3}+12\times 17^{4}-\left(3\times 0^{3}+12\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1016991
Simplify.