Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}+\sqrt{y-4}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int \sqrt{y-4}\mathrm{d}x
Integrate the sum term by term.
\frac{2x^{\frac{3}{2}}}{3}+\int \sqrt{y-4}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}+\sqrt{y-4}x
Find the integral of \sqrt{y-4} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2}{3}\times 16^{\frac{3}{2}}+\left(y-4\right)^{\frac{1}{2}}\times 16-\left(\frac{2}{3}\times 0^{\frac{3}{2}}+\left(y-4\right)^{\frac{1}{2}}\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{128}{3}+16\sqrt{y-4}
Simplify.