Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{12}-\frac{13}{90}x^{2}+1x+\frac{72}{5}\mathrm{d}x
Divide 13 by 13 to get 1.
\int -\frac{13x^{2}}{90}+x+\frac{72}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int -\frac{13x^{2}}{90}\mathrm{d}x+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
Integrate the sum term by term.
-\frac{13\int x^{2}\mathrm{d}x}{90}+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{13x^{3}}{270}+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -\frac{13}{90} times \frac{x^{3}}{3}.
-\frac{13x^{3}}{270}+\frac{x^{2}}{2}+\int \frac{72}{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
-\frac{13x^{3}}{270}+\frac{x^{2}}{2}+\frac{72x}{5}
Find the integral of \frac{72}{5} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{13}{270}\times 12^{3}+\frac{12^{2}}{2}+\frac{72}{5}\times 12-\left(-\frac{13}{270}\times 0^{3}+\frac{0^{2}}{2}+\frac{72}{5}\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{808}{5}
Simplify.