Solve for a
a=\frac{\sqrt{-27x^{3}-18x^{2}+900\times 100^{n}-90000e^{4}-3000081}}{3}
a=-\frac{\sqrt{-27x^{3}-18x^{2}+900\times 100^{n}-90000e^{4}-3000081}}{3}\text{, }-3x^{3}-2x^{2}+100^{n+1}-10000e^{4}-\frac{1000027}{3}\geq 0
Solve for n
n=\frac{\log(\frac{9x^{3}+6x^{2}+3a^{2}+30000e^{4}+1000027}{3})-2}{2}
-\left(3x^{3}+2x^{2}+10000e^{4}+\frac{1000027}{3}\right)<0\text{ or }\left(-\left(3x^{3}+2x^{2}+10000e^{4}+\frac{1000027}{3}\right)\geq 0\text{ and }a>\frac{\sqrt{-27x^{3}-18x^{2}-90000e^{4}-3000081}}{3}\text{ and }-27x^{3}-18x^{2}-90000e^{4}-3000081\geq 0\text{ and }a>\sqrt{-\left(3x^{3}+2x^{2}+10000e^{4}+\frac{1000027}{3}\right)}\right)\text{ or }\left(-\left(3x^{3}+2x^{2}+10000e^{4}+\frac{1000027}{3}\right)\geq 0\text{ and }a<-\frac{\sqrt{-27x^{3}-18x^{2}-90000e^{4}-3000081}}{3}\text{ and }-27x^{3}-18x^{2}-90000e^{4}-3000081\geq 0\text{ and }a<-\sqrt{-\left(3x^{3}+2x^{2}+10000e^{4}+\frac{1000027}{3}\right)}\right)
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}