Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int x+y+z\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int y\mathrm{d}x+\int z\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int y\mathrm{d}x+\int z\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+yx+\int z\mathrm{d}x
Find the integral of y using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}+yx+zx
Find the integral of z using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1}{2}\left(1-z-y\right)^{2}+y\left(1-z-y\right)+z\left(1-z-y\right)-\left(\frac{0^{2}}{2}+y\times 0+z\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1-\left(z+y\right)^{2}}{2}
Simplify.