Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{4}-x^{2}-x^{3}+x\mathrm{d}x
Use the distributive property to multiply x by x^{3}-x-x^{2}+1.
\int x^{4}-x^{2}-x^{3}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -x^{3}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-\int x^{2}\mathrm{d}x-\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-\int x^{2}\mathrm{d}x-\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{3}}{3}-\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{1^{5}}{5}-\frac{1^{3}}{3}-\frac{1^{4}}{4}+\frac{1^{2}}{2}-\left(\frac{0^{5}}{5}-\frac{0^{3}}{3}-\frac{0^{4}}{4}+\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{60}
Simplify.