Skip to main content
Evaluate
Tick mark Image

Share

\int _{0}^{1}x^{3}\times 3\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\int 3x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
3\int x^{3}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{3x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{3}{4}\times 1^{4}-\frac{3}{4}\times 0^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{4}
Simplify.