Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{2}+3x^{5}\mathrm{d}x
Use the distributive property to multiply x^{2} by 1+3x^{3}.
\int x^{2}+3x^{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 3x^{5}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+3\int x^{5}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+3\int x^{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{x^{6}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 3 times \frac{x^{6}}{6}.
\frac{1^{3}}{3}+\frac{1^{6}}{2}-\left(\frac{0^{3}}{3}+\frac{0^{6}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{5}{6}
Simplify.