Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+7x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 7x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+7\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+7\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{7x^{2}}{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 7 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{7x^{2}}{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{1^{3}}{3}+\frac{7}{2}\times 1^{2}+2\times 1-\left(\frac{0^{3}}{3}+\frac{7}{2}\times 0^{2}+2\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{35}{6}
Simplify.