Evaluate
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
Differentiate w.r.t. ξ
-\frac{\omega \left(t-2\pi \right)\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
Share
Copied to clipboard
\int_{0}^{1} {e ^ {-\xi \omega {(t - 2 * \pi)}} \sin(\omega_{d} {(t - 2 * \pi)})} d\tau
Substitute 2 * \pi for \tau.
\int \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\mathrm{d}\tau
Evaluate the indefinite integral first.
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\tau
Find the integral of \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}} using the table of common integrals rule \int a\mathrm{d}\tau =a\tau .
\frac{\sin(\omega _{d}\left(t-2\pi \right))\tau }{e^{\xi \omega \left(t-2\pi \right)}}
Simplify.
e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))+0e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}