Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. ξ
Tick mark Image

Similar Problems from Web Search

Share

\int_{0}^{1} {e ^ {-\xi \omega {(t - 2 * \pi)}} \sin(\omega_{d} {(t - 2 * \pi)})} d\tau
Substitute 2 * \pi for \tau.
\int \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\mathrm{d}\tau
Evaluate the indefinite integral first.
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\tau
Find the integral of \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}} using the table of common integrals rule \int a\mathrm{d}\tau =a\tau .
\frac{\sin(\omega _{d}\left(t-2\pi \right))\tau }{e^{\xi \omega \left(t-2\pi \right)}}
Simplify.
e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))+0e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
Simplify.