Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5u^{5}+3u^{2}+u\mathrm{d}u
Evaluate the indefinite integral first.
\int 5u^{5}\mathrm{d}u+\int 3u^{2}\mathrm{d}u+\int u\mathrm{d}u
Integrate the sum term by term.
5\int u^{5}\mathrm{d}u+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Factor out the constant in each of the terms.
\frac{5u^{6}}{6}+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{5}\mathrm{d}u with \frac{u^{6}}{6}. Multiply 5 times \frac{u^{6}}{6}.
\frac{5u^{6}}{6}+u^{3}+\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{2}\mathrm{d}u with \frac{u^{3}}{3}. Multiply 3 times \frac{u^{3}}{3}.
\frac{5u^{6}}{6}+u^{3}+\frac{u^{2}}{2}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u\mathrm{d}u with \frac{u^{2}}{2}.
\frac{5}{6}\times 1^{6}+1^{3}+\frac{1^{2}}{2}-\left(\frac{5}{6}\times 0^{6}+0^{3}+\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{3}
Simplify.