Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}18t^{3}+9t\mathrm{d}t
Use the distributive property to multiply 3t by 6t^{2}+3.
\int 18t^{3}+9t\mathrm{d}t
Evaluate the indefinite integral first.
\int 18t^{3}\mathrm{d}t+\int 9t\mathrm{d}t
Integrate the sum term by term.
18\int t^{3}\mathrm{d}t+9\int t\mathrm{d}t
Factor out the constant in each of the terms.
\frac{9t^{4}}{2}+9\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 18 times \frac{t^{4}}{4}.
\frac{9t^{4}+9t^{2}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 9 times \frac{t^{2}}{2}.
\frac{9}{2}\times 1^{4}+\frac{9}{2}\times 1^{2}-\left(\frac{9}{2}\times 0^{4}+\frac{9}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
9
Simplify.