Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}2^{3}x\times 2x\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int _{0}^{1}2^{4}xx\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\int _{0}^{1}2^{4}x^{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{1}16x^{2}\mathrm{d}x
Calculate 2 to the power of 4 and get 16.
\int 16x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
16\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{16}{3}\times 1^{3}-\frac{16}{3}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{16}{3}
Simplify.