Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 11\sqrt[11]{x}\mathrm{d}x
Evaluate the indefinite integral first.
11\int \sqrt[11]{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{121x^{\frac{12}{11}}}{12}
Rewrite \sqrt[11]{x} as x^{\frac{1}{11}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{11}}\mathrm{d}x with \frac{x^{\frac{12}{11}}}{\frac{12}{11}}. Simplify.
\frac{121}{12}\times 1^{\frac{12}{11}}-\frac{121}{12}\times 0^{\frac{12}{11}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{121}{12}
Simplify.