Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-6x^{2}+5x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int 5x\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-2x^{3}+5\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-2x^{3}+\frac{5x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{1^{4}}{4}-2\times 1^{3}+\frac{5}{2}\times 1^{2}-\left(\frac{0^{4}}{4}-2\times 0^{3}+\frac{5}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{4}
Simplify.