Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{2}+2+x\mathrm{d}x
Multiply -1 and -1 to get 1.
\int x^{2}+2+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 2\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int 2\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+2x+\int x\mathrm{d}x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+2x+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{1^{3}}{3}+2\times 1+\frac{1^{2}}{2}-\left(\frac{0^{3}}{3}+2\times 0+\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{17}{6}
Simplify.