Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{18}+18^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{18}\mathrm{d}x+\int 18^{x}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{19}}{19}+\int 18^{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{18}\mathrm{d}x with \frac{x^{19}}{19}.
\frac{x^{19}}{19}+\frac{18^{x}}{\ln(18)}
Use \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)} from the table of common integrals to obtain the result.
\frac{1^{19}}{19}+18^{1}\ln(18)^{-1}-\left(\frac{0^{19}}{19}+18^{0}\ln(18)^{-1}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{19}+\frac{17}{\ln(18)}
Simplify.