\int _ { 0 } ^ { 1 } ( x + 3 ) e ^ { x } d x = a + \text { be voi } a
Solve for a
a=\frac{3e-2}{eibov+1}
o=0\text{ or }v=0\text{ or }b\neq \frac{i}{eov}
Solve for b
\left\{\begin{matrix}b=\frac{i\left(a+2-3e\right)}{eaov}\text{, }&a\neq 0\text{ and }o\neq 0\text{ and }v\neq 0\\b\in \mathrm{R}\text{, }&a=3e-2\text{ and }\left(o=0\text{ or }v=0\right)\end{matrix}\right.
Share
Copied to clipboard
\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x=a+bevoia
Use the distributive property to multiply x+3 by e^{x}.
a+bevoia=\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
\left(1+bevoi\right)a=\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x
Combine all terms containing a.
\left(eibov+1\right)a=3e-2
The equation is in standard form.
\frac{\left(eibov+1\right)a}{eibov+1}=\frac{3e-2}{eibov+1}
Divide both sides by 1+ibevo.
a=\frac{3e-2}{eibov+1}
Dividing by 1+ibevo undoes the multiplication by 1+ibevo.
\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x=a+bevoia
Use the distributive property to multiply x+3 by e^{x}.
a+bevoia=\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
bevoia=\int _{0}^{1}xe^{x}+3e^{x}\mathrm{d}x-a
Subtract a from both sides.
eiaovb=-a+3e-2
The equation is in standard form.
\frac{eiaovb}{eiaov}=\frac{-a+3e-2}{eiaov}
Divide both sides by ievoa.
b=\frac{-a+3e-2}{eiaov}
Dividing by ievoa undoes the multiplication by ievoa.
b=-\frac{i\left(-a+3e-2\right)}{eaov}
Divide 3e-2-a by ievoa.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}