Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}3x^{2}-6x+9x-18\mathrm{d}x
Apply the distributive property by multiplying each term of x+3 by each term of 3x-6.
\int _{0}^{1}3x^{2}+3x-18\mathrm{d}x
Combine -6x and 9x to get 3x.
\int 3x^{2}+3x-18\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -18\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int -18\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+3\int x\mathrm{d}x+\int -18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+\frac{3x^{2}}{2}+\int -18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
x^{3}+\frac{3x^{2}}{2}-18x
Find the integral of -18 using the table of common integrals rule \int a\mathrm{d}x=ax.
1^{3}+\frac{3}{2}\times 1^{2}-18-\left(0^{3}+\frac{3}{2}\times 0^{2}-18\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{31}{2}
Simplify.