Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int u^{2}+6x\mathrm{d}u
Evaluate the indefinite integral first.
\int u^{2}\mathrm{d}u+\int 6x\mathrm{d}u
Integrate the sum term by term.
\int u^{2}\mathrm{d}u+6\int x\mathrm{d}u
Factor out the constant in each of the terms.
\frac{u^{3}}{3}+6\int x\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{2}\mathrm{d}u with \frac{u^{3}}{3}.
\frac{u^{3}}{3}+6xu
Find the integral of x using the table of common integrals rule \int a\mathrm{d}u=au.
\frac{1^{3}}{3}+6x\times 1-\left(\frac{0^{3}}{3}+6x\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{3}+6x
Simplify.