Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 8x+3x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x\mathrm{d}x+\int 3x^{2}\mathrm{d}x
Integrate the sum term by term.
8\int x\mathrm{d}x+3\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
4x^{2}+3\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 8 times \frac{x^{2}}{2}.
4x^{2}+x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
4\times 1^{2}+1^{3}-\left(4\times 0^{2}+0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
5
Simplify.