Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \left(6t-3t\right)^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\left(6-3\right)^{2}\int t^{2}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
\left(6-3\right)^{2}\times \frac{t^{3}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
3t^{3}
Simplify.
3\times 1^{3}-3\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
3
Simplify.