Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
Apply the distributive property by multiplying each term of 2x+3 by each term of 3x-5.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
Combine -10x and 9x to get -x.
\int 6x^{2}-x-15\mathrm{d}x
Evaluate the indefinite integral first.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
Find the integral of -15 using the table of common integrals rule \int a\mathrm{d}x=ax.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{27}{2}
Simplify.