Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 1-8v^{3}+16v^{7}\mathrm{d}v
Evaluate the indefinite integral first.
\int 1\mathrm{d}v+\int -8v^{3}\mathrm{d}v+\int 16v^{7}\mathrm{d}v
Integrate the sum term by term.
\int 1\mathrm{d}v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Factor out the constant in each of the terms.
v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}v=av.
v-2v^{4}+16\int v^{7}\mathrm{d}v
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{3}\mathrm{d}v with \frac{v^{4}}{4}. Multiply -8 times \frac{v^{4}}{4}.
v-2v^{4}+2v^{8}
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{7}\mathrm{d}v with \frac{v^{8}}{8}. Multiply 16 times \frac{v^{8}}{8}.
1-2\times 1^{4}+2\times 1^{8}-\left(0-2\times 0^{4}+2\times 0^{8}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1
Simplify.