Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}1-8x+16x^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-4x\right)^{2}.
\int 1-8x+16x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 1\mathrm{d}x+\int -8x\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x-8\int x\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
x-8\int x\mathrm{d}x+16\int x^{2}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-4x^{2}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -8 times \frac{x^{2}}{2}.
x-4x^{2}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
1-4\times 1^{2}+\frac{16}{3}\times 1^{3}-\left(0-4\times 0^{2}+\frac{16}{3}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{3}
Simplify.