Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}\left(-x\right)^{3}+x^{2}\mathrm{d}x
Calculate -x to the power of 2 and get x^{2}.
\int _{0}^{1}\left(-1\right)^{3}x^{3}+x^{2}\mathrm{d}x
Expand \left(-x\right)^{3}.
\int _{0}^{1}-x^{3}+x^{2}\mathrm{d}x
Calculate -1 to the power of 3 and get -1.
\int -x^{3}+x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
-\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
-\frac{x^{4}}{4}+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-\frac{1^{4}}{4}+\frac{1^{3}}{3}-\left(-\frac{0^{4}}{4}+\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{12}
Simplify.