Evaluate
e-\sin(1)-\cos(1)\approx 1.336508538
Share
Copied to clipboard
\int \sin(x)-\cos(x)+e^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sin(x)\mathrm{d}x+\int -\cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Integrate the sum term by term.
\int \sin(x)\mathrm{d}x-\int \cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Factor out the constant in each of the terms.
-\cos(x)-\int \cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\cos(x)-\sin(x)+\int e^{x}\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
-\cos(x)-\sin(x)+e^{x}
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
-\cos(1)-\sin(1)+e^{1}-\left(-\cos(0)-\sin(0)+e^{0}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
e-\cos(1)-\sin(1)
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}