Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sin(x)-\cos(x)+e^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sin(x)\mathrm{d}x+\int -\cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Integrate the sum term by term.
\int \sin(x)\mathrm{d}x-\int \cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Factor out the constant in each of the terms.
-\cos(x)-\int \cos(x)\mathrm{d}x+\int e^{x}\mathrm{d}x
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\cos(x)-\sin(x)+\int e^{x}\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
-\cos(x)-\sin(x)+e^{x}
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
-\cos(1)-\sin(1)+e^{1}-\left(-\cos(0)-\sin(0)+e^{0}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
e-\cos(1)-\sin(1)
Simplify.