Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{2}}{2}+5\sqrt{x}+\cos(x)\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{2}}{2}\mathrm{d}x+\int 5\sqrt{x}\mathrm{d}x+\int \cos(x)\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{2}\mathrm{d}x}{2}+5\int \sqrt{x}\mathrm{d}x+\int \cos(x)\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{6}+5\int \sqrt{x}\mathrm{d}x+\int \cos(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{1}{2} times \frac{x^{3}}{3}.
\frac{x^{3}}{6}+\frac{10x^{\frac{3}{2}}}{3}+\int \cos(x)\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 5 times \frac{2x^{\frac{3}{2}}}{3}.
\frac{x^{3}}{6}+\frac{10x^{\frac{3}{2}}}{3}+\sin(x)
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
\frac{1^{3}}{6}+\frac{10}{3}\times 1^{\frac{3}{2}}+\sin(1)-\left(\frac{0^{3}}{6}+\frac{10}{3}\times 0^{\frac{3}{2}}+\sin(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2}\left(7+2\sin(1)\right)
Simplify.