Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int \sqrt{x}\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{\frac{3}{2}}}{3}-\int x^{2}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}-x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{2}{3}\times 1^{\frac{3}{2}}-\frac{1^{3}}{3}-\left(\frac{2}{3}\times 0^{\frac{3}{2}}-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{3}
Simplify.