Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}\frac{\frac{1}{2}-2^{2}-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of -1 and get \frac{1}{2}.
\int _{0}^{1}\frac{\frac{1}{2}-4-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-\frac{7}{2}-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Subtract 4 from \frac{1}{2} to get -\frac{7}{2}.
\int _{0}^{1}\frac{-\frac{7}{2}-\frac{1}{2}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of -1 and get \frac{1}{2}.
\int _{0}^{1}\frac{-4}{2^{2}+2^{2}}\mathrm{d}x
Subtract \frac{1}{2} from -\frac{7}{2} to get -4.
\int _{0}^{1}\frac{-4}{4+2^{2}}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-4}{4+4}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-4}{8}\mathrm{d}x
Add 4 and 4 to get 8.
\int _{0}^{1}-\frac{1}{2}\mathrm{d}x
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
\int -\frac{1}{2}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{x}{2}
Find the integral of -\frac{1}{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{1}{2}+\frac{1}{2}\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1}{2}
Simplify.