Evaluate
-\frac{1}{2}=-0.5
Share
Copied to clipboard
\int _{0}^{1}\frac{\frac{1}{2}-2^{2}-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of -1 and get \frac{1}{2}.
\int _{0}^{1}\frac{\frac{1}{2}-4-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-\frac{7}{2}-2^{-1}}{2^{2}+2^{2}}\mathrm{d}x
Subtract 4 from \frac{1}{2} to get -\frac{7}{2}.
\int _{0}^{1}\frac{-\frac{7}{2}-\frac{1}{2}}{2^{2}+2^{2}}\mathrm{d}x
Calculate 2 to the power of -1 and get \frac{1}{2}.
\int _{0}^{1}\frac{-4}{2^{2}+2^{2}}\mathrm{d}x
Subtract \frac{1}{2} from -\frac{7}{2} to get -4.
\int _{0}^{1}\frac{-4}{4+2^{2}}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-4}{4+4}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int _{0}^{1}\frac{-4}{8}\mathrm{d}x
Add 4 and 4 to get 8.
\int _{0}^{1}-\frac{1}{2}\mathrm{d}x
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
\int -\frac{1}{2}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{x}{2}
Find the integral of -\frac{1}{2} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{1}{2}+\frac{1}{2}\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}