Skip to main content
Solve for I
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2}I=\int _{0}^{1}\frac{1-t^{2}}{1+6t^{2}+t^{4}}\mathrm{d}t
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}I=\int _{0}^{1}\frac{1-t^{2}}{t^{4}+6t^{2}+1}\mathrm{d}t
The equation is in standard form.
\frac{\frac{1}{2}I}{\frac{1}{2}}=\frac{\int _{0}^{1}\frac{1-t^{2}}{t^{4}+6t^{2}+1}\mathrm{d}t}{\frac{1}{2}}
Multiply both sides by 2.
I=\frac{\int _{0}^{1}\frac{1-t^{2}}{t^{4}+6t^{2}+1}\mathrm{d}t}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
I=2\int _{0}^{1}\frac{1-t^{2}}{t^{4}+6t^{2}+1}\mathrm{d}t
Divide \int _{0}^{1}\frac{1-t^{2}}{1+6t^{2}+t^{4}}\mathrm{d}t by \frac{1}{2} by multiplying \int _{0}^{1}\frac{1-t^{2}}{1+6t^{2}+t^{4}}\mathrm{d}t by the reciprocal of \frac{1}{2}.