Evaluate
\frac{1}{4}=0.25
Share
Copied to clipboard
\int \frac{1-y^{3}}{3}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{1}{3}\mathrm{d}y+\int -\frac{y^{3}}{3}\mathrm{d}y
Integrate the sum term by term.
\int \frac{1}{3}\mathrm{d}y-\frac{\int y^{3}\mathrm{d}y}{3}
Factor out the constant in each of the terms.
\frac{y-\int y^{3}\mathrm{d}y}{3}
Find the integral of \frac{1}{3} using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y}{3}-\frac{y^{4}}{12}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{3}\mathrm{d}y with \frac{y^{4}}{4}. Multiply -\frac{1}{3} times \frac{y^{4}}{4}.
\frac{1}{3}\times 1-\frac{1^{4}}{12}-\left(\frac{1}{3}\times 0-\frac{0^{4}}{12}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{4}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}