Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1-y^{3}}{3}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{1}{3}\mathrm{d}y+\int -\frac{y^{3}}{3}\mathrm{d}y
Integrate the sum term by term.
\int \frac{1}{3}\mathrm{d}y-\frac{\int y^{3}\mathrm{d}y}{3}
Factor out the constant in each of the terms.
\frac{y-\int y^{3}\mathrm{d}y}{3}
Find the integral of \frac{1}{3} using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{y}{3}-\frac{y^{4}}{12}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{3}\mathrm{d}y with \frac{y^{4}}{4}. Multiply -\frac{1}{3} times \frac{y^{4}}{4}.
\frac{1}{3}\times 1-\frac{1^{4}}{12}-\left(\frac{1}{3}\times 0-\frac{0^{4}}{12}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{4}
Simplify.