Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \cos(x)-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \cos(x)\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int \cos(x)\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\sin(x)-\int x^{2}\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
\sin(x)-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\sin(1)-\frac{1^{3}}{3}-\left(\sin(0)-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{3}\left(3\sin(1)-1\right)
Simplify.