Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 528x+384x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 528x\mathrm{d}x+\int 384x^{2}\mathrm{d}x
Integrate the sum term by term.
528\int x\mathrm{d}x+384\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
264x^{2}+384\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 528 times \frac{x^{2}}{2}.
264x^{2}+128x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 384 times \frac{x^{3}}{3}.
264\times \left(0\times 5\right)^{2}+128\times \left(0\times 5\right)^{3}-\left(264\times 0^{2}+128\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.