Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \sqrt{t}\mathrm{d}t
Evaluate the indefinite integral first.
\frac{2t^{\frac{3}{2}}}{3}
Rewrite \sqrt{t} as t^{\frac{1}{2}}. Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{\frac{1}{2}}\mathrm{d}t with \frac{t^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2}{3}\left(\sin(x)\right)^{\frac{3}{2}}-\frac{2}{3}\times 0^{\frac{3}{2}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2\left(\sin(x)\right)^{\frac{3}{2}}}{3}
Simplify.