Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Share

\int _{0}^{\pi }x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Multiply x and x to get x^{2}.
\int x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Evaluate the indefinite integral first.
\cos(n)\sqrt{\pi }\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\cos(n)\sqrt{\pi }\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{\sqrt{\pi }\cos(n)x^{3}}{3}
Simplify.
\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\pi ^{3}-\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\cos(n)\pi ^{\frac{7}{2}}}{3}
Simplify.