Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 7\sin(t)-9\cos(t)\mathrm{d}t
Evaluate the indefinite integral first.
\int 7\sin(t)\mathrm{d}t+\int -9\cos(t)\mathrm{d}t
Integrate the sum term by term.
7\int \sin(t)\mathrm{d}t-9\int \cos(t)\mathrm{d}t
Factor out the constant in each of the terms.
-7\cos(t)-9\int \cos(t)\mathrm{d}t
Use \int \sin(t)\mathrm{d}t=-\cos(t) from the table of common integrals to obtain the result. Multiply 7 times -\cos(t).
-7\cos(t)-9\sin(t)
Use \int \cos(t)\mathrm{d}t=\sin(t) from the table of common integrals to obtain the result.
-7\cos(\pi )-9\sin(\pi )-\left(-7\cos(0)-9\sin(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
14
Simplify.