Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4\left(e^{x}+\sin(x)\right)\mathrm{d}x
Evaluate the indefinite integral first.
\int 4e^{x}\mathrm{d}x+\int 4\sin(x)\mathrm{d}x
Integrate the sum term by term.
4\left(\int e^{x}\mathrm{d}x+\int \sin(x)\mathrm{d}x\right)
Factor out the constant in each of the terms.
4\left(e^{x}+\int \sin(x)\mathrm{d}x\right)
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
4\left(e^{x}-\cos(x)\right)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result. Multiply 4 times -\cos(x).
4e^{\pi }-4\cos(\pi )-\left(4e^{0}-4\cos(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
4e^{\pi }+4
Simplify.