Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \cos(x)+x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \cos(x)\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
\sin(x)+\int x^{2}\mathrm{d}x
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
\sin(x)+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\sin(\pi )+\frac{\pi ^{3}}{3}-\left(\sin(0)+\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\pi ^{3}}{3}
Simplify.