Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \int _{0}^{1}x^{2}\left(x^{2}+y^{2}\right)^{3}r\mathrm{d}r\mathrm{d}\theta
Evaluate the indefinite integral first.
\int _{0}^{1}x^{2}\left(x^{2}+y^{2}\right)^{3}r\mathrm{d}r\theta
Find the integral of \int _{0}^{1}x^{2}\left(x^{2}+y^{2}\right)^{3}r\mathrm{d}r using the table of common integrals rule \int a\mathrm{d}\theta =a\theta .
\frac{x^{2}\left(x^{2}+y^{2}\right)^{3}\theta }{2}
Simplify.
\frac{1}{2}x^{2}\left(x^{2}+y^{2}\right)^{3}\pi -\frac{1}{2}x^{2}\left(x^{2}+y^{2}\right)^{3}\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{x^{2}\left(x^{2}+y^{2}\right)^{3}\pi }{2}
Simplify.