Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. θ
Tick mark Image

Similar Problems from Web Search

Share

\int \left(\cos(\theta )\right)^{3}\sin(ϕ)\mathrm{d}ϕ
Evaluate the indefinite integral first.
\left(\cos(\theta )\right)^{3}\int \sin(ϕ)\mathrm{d}ϕ
Factor out the constant using \int af\left(ϕ\right)\mathrm{d}ϕ=a\int f\left(ϕ\right)\mathrm{d}ϕ.
-\left(\cos(\theta )\right)^{3}\cos(ϕ)
Use \int \sin(\theta )\mathrm{d}\theta =-\cos(\theta ) from the table of common integrals to obtain the result.
-\left(\cos(\theta )\right)^{3}\cos(\pi )+\left(\cos(\theta )\right)^{3}\cos(0)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2\left(\cos(\theta )\right)^{3}
Simplify.