Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. l
Tick mark Image

Similar Problems from Web Search

Share

\int 1-x\mathrm{d}x
Evaluate the indefinite integral first.
\int 1\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
x-\int x\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
la^{-1}-\frac{1}{2}\left(la^{-1}\right)^{2}-\left(0-\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\left\{\begin{matrix}\frac{l\left(-l+2a\right)}{2a^{2}},&\\\text{Indeterminate},&a=0\end{matrix}\right.
Simplify.