Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}+x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{1}{4}\times \left(\frac{3}{2}\pi \right)^{4}+\frac{1}{3}\times \left(\frac{3}{2}\pi \right)^{3}-\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9\left(9\pi +8\right)\pi ^{3}}{64}
Simplify.