Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2y-3y^{2}-y^{2}\mathrm{d}y
Evaluate the indefinite integral first.
\int 2y\mathrm{d}y+\int -3y^{2}\mathrm{d}y+\int -y^{2}\mathrm{d}y
Integrate the sum term by term.
2\int y\mathrm{d}y-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
y^{2}-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply 2 times \frac{y^{2}}{2}.
y^{2}-y^{3}-\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -3 times \frac{y^{3}}{3}.
y^{2}-y^{3}-\frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
y^{2}-\frac{4y^{3}}{3}
Simplify.
\left(\frac{1}{2}\right)^{2}-\frac{4}{3}\times \left(\frac{1}{2}\right)^{3}-\left(0^{2}-\frac{4}{3}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{12}
Simplify.