Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{\frac{\pi }{4}}2x^{3}ny_{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int 2x^{3}ny_{2}\mathrm{d}x
Evaluate the indefinite integral first.
2ny_{2}\int x^{3}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
2ny_{2}\times \frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{ny_{2}x^{4}}{2}
Simplify.
\frac{1}{2}ny_{2}\times \left(\frac{1}{4}\pi \right)^{4}-\frac{1}{2}ny_{2}\times 0^{4}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{ny_{2}\pi ^{4}}{512}
Simplify.