Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Share

\int x\sin(y)\mathrm{d}x
Evaluate the indefinite integral first.
\sin(y)\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sin(y)\times \frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{\sin(y)x^{2}}{2}
Simplify.
\frac{1}{2}\sin(y)\left(\cos(y)\right)^{2}-\frac{1}{2}\sin(y)\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\sin(y)+\sin(3y)}{8}
Simplify.