Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}+x^{3}+2x+1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x+\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}+\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{x^{4}}{4}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{x^{4}}{4}+x^{2}+\int 1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{x^{5}}{5}+\frac{x^{4}}{4}+x^{2}+x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{8^{5}}{5}+\frac{8^{4}}{4}+8^{2}+8-\left(\frac{\left(-8\right)^{5}}{5}+\frac{\left(-8\right)^{4}}{4}+\left(-8\right)^{2}-8\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65616}{5}
Simplify.